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This article examines a reduced form of the ‘purely dissipative’ model proposed
several years ago as a general continuum model for the rheology of non-colloidal
particle dispersions, ranging from Stokesian suspensions to non-cohesive granular
media. Essential to the model is a positive-definite viscosity tensor η, depending on
the history of deformation and providing a crucial restriction on related models for
anisotropic fluids and suspensions. In the present treatment, η is assumed to be as
an isotropic function of a history-dependent second-rank ‘texture’ or ‘fabric’ tensor
A. A formula for η(A) borrowed from the analogous theory of linear elasticity, and
its subsequent expansion for weak anisotropy provides an explicit expression for the
stress tensor in terms of fabric, strain-rate and eight material constants.

Detailed consideration is given to the special case of Stokesian suspensions, which
represent an intriguing subset of memory materials without characteristic time. For
this idealized fluid one finds linear dependence of all stresses, including viscometric
normal stress, on present deformation rate, with the provision for an arbitrary fabric
evolution (‘thixotropy’) in unsteady deformations. As a concrete example, a co-
rotational memory integral is adopted for A in terms of strain-rate history, and a
memory kernel with two-mode exponential relaxation gives close agreement with
the rather sparse experimental data on transient shear experiments. In the proposed
model, an extremely rapid mode of relaxation is required to mimic the incomplete
reversal of stress observed in experiments involving abrupt reversal of steady shearing,
supporting the conclusion of others that non-hydrodynamic effects, with breaking of
Stokesian symmetry, may be implicated in such experiments.

Qualitative comparisons are made to a closely related model, derived from a
micro-mechanical analysis of Stokesian suspensions, but also involving non-Stokesian
effects.

The present analysis may point the way to improved micro-mechanical analysis and
to further experiments. Possible extensions of the model to the viscoplasticity of dry
and liquid-saturated granular media also are discussed briefly.

1. Introduction
The main focus of this paper is the continuum mechanics of Stokesian suspensions,

i.e. idealized suspensions of rigid neutrally buoyant particles in Newtonian liquids,
in which inertia and all forces other than those arising from viscosity are negligible.
With impetus from the seminal work of Batchelor (1970), which inter alia introduces
the idea of a viscosity tensor, considerable progress has been made over the past
three decades in the basic theoretical understanding and description of suspension
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micro-mechanics. Stickel & Powell (2005) cover several aspects of dense-suspension
rheology, including a discussion of both Brownian and inertial effects. The latter
represent prominent examples of Stokesian symmetry breaking, with significant
qualitative changes in suspension rheology. More subtle effects may arise, however,
from multi-body hydrodynamic interactions, which recent theoretical studies (Drazer
et al. 2002, 2004) have definitively established as chaotic in nature. Stokesian chaos
provides a compelling theoretical explanation of effects such as hydrodynamic
diffusion (Leighton & Acrivos 1987; Acrivos et al. 1992; Drazer et al. 2002) and
the ‘loss of memory’, which was dubbed ‘effaceable memory’ by Goddard (1982)
without elucidation of its origins. Moreover, chaos may be implicated in several
remarkable aspects of suspension rheology, including the development of anisotropic
microstructure (Husband & Gadala-Maria 1987; Parsi & Gadala-Maria 1987), with
linear dependence of viscometric normal stress on shear rate (Zarraga, Hill & Leighton
2000; Singh & Nott 2003), and the peculiar transient shear behaviour observed by
Gadala-Maria & Acrivos (1980); Kolli, Pollauf & Gadala-Maria 2002).

With this as backdrop, the present study revisits a continuum theory of dissipative
materials without characteristic time proposed by Goddard (1984) as models for
Stokesian suspensions and non-cohesive granular media. We set aside here the general
issues of material symmetry addressed in that paper, which, incidentally, overlooks the
revision by Noll (1972) of his previous and widely known classification scheme. The
narrower objective here is to set down a special continuum framework for particulate
dispersions, as a guide to further micro-mechanical analysis and experiment.

2. Simplified model of dissipative materials
In the following, boldface symbols are employed for tensors, with lower- and

upper-case Roman denoting vectors and second-rank tensors, respectively, lower-case
Greek denoting tensors of higher rank, and superscript T denoting transposition of a
second-rank tensor. Cartesian components, with the standard summation convention,
are displayed where necessary for clarity. The standard mathematical symbol ⊗ is
employed for tensor products, so that α = a⊗B stands for αijk = aiBjk , etc. In the usual
way, colons indicate ordered pairwise contraction of the trailing prefactor indices with
the leading postfactor indices. A single dot denotes the scalar product of vectors, but
is omitted from products indicating linear transformation of vectors by second-rank
tensors. v(x, t) denotes the velocity field at spatial position x and time t , with notation
for material points suppressed and local kinematics assumed to represent materially
homogeneous deformations.

2.1. Reduced viscosity-fabric dependence

In the literature on complex fluids such as suspensions, liquid crystals, polymers
and granular media (Hand (1962); Barthès-Biesel & Acrivos 1973; Cowin 1985;
Bird, Armstrong & Hassager 1987; Phan-Thien 1995; Goddard 1998; Larson 1999;
Fang et al. 2002), the microstructure and its evolution is often described by means
of internal variables or order parameters, given by certain ‘texture’ tensors. These
generally represent various statistical moments

〈a〉, 〈a ⊗ a〉, . . . , 〈a ⊗ a ⊗ a ⊗ a〉, . . . , (1)

with respect to a microstructural probability distribution f (a, t) of vector-valued
‘director’ a. When a is a unit vector, these are sometimes referred to as ‘fabric tensors’
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in the literature on image processing and granular media (Kanatani 1984; Goddard
1998).

Basic analyses of the statistical micro-mechanics are usually couched in terms of
probability distributions f (a, t), as illustrated by various suspension theories
(Hand 1962; Barthès-Biesel & Acrivos 1973; Hinch & Leal 1975; Szeri & Leal
1994; Brady & Morris 1997), where a represents particle orientation or pairwise
separation. The usual goal of such analyses is to extract continuum-level constitutive
equations for the evolution of quantities like those in (1) and derived quantities
such as the stress tensor T. To obtain tractable equations, one often seeks closure
approximations giving higher-order moments in terms of a select set of lower-order
ones (Hinch & Leal 1975; Szeri & Leal 1994; Phan-Thien 1995), and similar ideas
motivate our simplification of the general continuum model considered here.

For general dissipative materials (Goddard 1984), the current (Cauchy) stress T(t)
at a given material point is determined by the local strain rate E(t) = [∇v + (∇v)T ]/2
and a positive-definite fourth-rank viscosity tensor as

T(t) = 2η{h} :E(t), (Tij = 2ηijklEkl with ηijkl = ηjikl = ηijlk), (2)

where h represents the history of deformation, to be specified by appropriate kinematic
tensors in a frame-indifferent set of evolution equations. In the case of incompressible
materials such as Stokesian suspensions, (2) defines stress only up to an arbitrary
additive isotropic pressure or, with the restriction ηiijk = 0 = ηijkk , it defines the
deviatoric stress.

With the requirement of frame indifference and suitable restrictions on the evolution
equations, (2) defines a class of ‘simple materials’, but one not necessarily endowed
with fading memory (Coleman & Noll 1961; Truesdell & Noll 1965; Goddard 1984).
Indeed, η{h} may even exhibit singular dependence on sets of zero measure, e.g. on
E(t), as discussed further below.

As a major simplification, of the type employed by Cowin (1985) for the analogous
problem in anisotropic elasticity, we assume that η is given uniquely as an isotropic
function of a symmetric second-rank fabric tensor A =AT , which in turn depends on
h. It follows from (2) that T can then be written as an isotropic tensor polynomial in
A, E, with scalar coefficients depending on their joint isotropic scalar invariants.

Before specializing to the linear forms in E appropriate to Stokesian suspensions, we
note the relation to the Ericksen–Hand anisotropic fluid model, regarded by several
past investigators as a possible model of particulate suspensions (Hand 1962; Barthès-
Biesel & Acrivos 1973). Equation (2) of Hand (1962) gives the stress T as a linear
combination of nine distinct symmetric tensors given, respectively, by symmetrization
of the set: {

P(mn) := AmEn : m, n = 0, 1, 2
}
, (3)

involving nine independent coefficients depending on the joint isotropic scalar
invariants: {

tr
(
P(mn)

)
: 1 � n + m � 3

}
, (4)

where exponents zero represent the unit tensor 1.
We further recall that the evolution of A in Hand’s model is represented by giving

the co-rotational (Jaumann) rate

DtA = dtA + AW − WA, (5)

as an isotropic function of A, E having the same general form as that for T. Here,
W(t) = [∇v − (∇v)T ]/2 denotes vorticity and dt = ∂t + v · ∇ the material derivative.
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The restriction to linearity in E (Hand 1962; Barthès-Biesel & Acrivos 1973), i.e. to
n=1 in (3), leads to a linear form in E with 11 independent coefficients depending
only on the scalar invariants of A, represented by n= 0 in (4). On the other hand, the
corresponding expression for stress given by equation (5) of Cowin (1985) involves
only nine independent coefficients, owing essentially to a required symmetry of the
form:

ηijkl = ηklij (6)

and some further reductions arising from isotropy (see below). The symmetry of
elastic moduli is guaranteed by the existence of a strain-energy function, whereas it
may be viewed generally as an Onsager relation for linear dissipation. In the present
context, symmetry is tantamount to the principle of minimum dissipation, a property
of the underlying Stokesian dynamics, which we recall has been employed previously
for suspension-viscosity estimates by Nunan & Keller (1984). Without a fully rigorous
proof, we therefore adopt (6).

The required positivity of dissipation tr(TE) places additional restrictions on the
nine coefficients in the above linear form, restrictions that we do not record here
explicitly.

As a further simplification, we identify A with the deviator of a positive definite
tensor, e.g. 〈n ⊗ n〉, with n denoting a unit vector and tr(〈n ⊗ n〉) = 1:

A = 〈n ⊗ n〉 − 1
3
1, and tr(A) = 0. (7)

In the usual interpretations of granular fabric, n, is identified with the line of centres
of neighbouring particles, as done by Phan-Thien (1995) for dense suspensions of
nearly spherical particles.

Replacement of 〈n ⊗ n〉 by any symmetric tensor with unit trace gives a somewhat
more general result. Also, a tensor A with non-zero trace might serve to represent
isotropic changes in suspension microstructure, such as those associated with granular
dilatancy (Didwania, Ledniczky & Goddard 2001). Since the physical basis for such
effects in Stokesian suspensions is less than evident, we invoke Occam’s razor to
reduce the number of parameters.

Then, the trace norm |A| = {tr(A2)}1/2 provides a measure of anisotropy and, given
a smooth dependence on |A|, we may expand equation (5) of Cowin (1985) for small
|A| to yield:

T = −p1 + 2[η0 + η2tr(A
2) + η3tr(A

3)]E + [ν2tr(AE) + ν3tr(EA2)]A + ν3tr(AE)A2

+ [µ1 + µ3tr(A
2)](AE + EA) + µ2(A

2E + EA2) + O(|A|4) (8)

involving an arbitrary isotropic pressure p and eight distinct material coefficients
η0, . . . , ν2, . . . , ν3, whose subscripts indicate the algebraic order in |A| of their
postfactors. These coefficients depend generally on particle volume fraction φ and
other non-dimensional parameters necessary to define particle geometry.

To complete the constitutive model, we require a suitable evolution equation for
A. Ideally, this should be obtained from a detailed micro-mechanical analysis, of
the type proposed for certain model suspensions (Barthès-Biesel & Acrivos 1973;
Hinch & Leal 1975; Szeri & Leal 1994; Phan-Thien 1995; Morris & Brady 1996;
Brady & Morris 1997; Morris & Katyal 2002), but for the present purposes, we shall
adopt a phenomenological model, motivated by certain global aspects of Stokesian
dynamics.
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At this juncture, it is worth discussing the closely related work of Phan-Thien
(1995), who proposes a model for Stokesian suspensions based on a special case of
(8), with the only non-zero coefficients being η0, µ1, ν2, plus a linear combination of
terms AEA and |E|A. The first of these, which also appears in the model of Barthès-
Biesel & Acrivos (1973), can be reduced to a linear combination of terms already
appearing in (8) by means of a well-known result of Rivlin (1955).

The second term |E|A is construed by Phan-Thien to represent statistical
fluctuations, by analogy to Brownian effects in suspensions (Morris & Brady 1996;
Morris & Katyal 2002). Terms of this type, homogeneous of degree one but nonlinear
in E, represent broken Stokesian symmetry, whose origin is not exactly clear, but
whose effects are considered below. It is worth noting that the addition of a linear
term in |E| to the Stokesian form (2) represents the viscous analogue of ‘hypoplasticity’
(Kolymbas 2000), where a similar term serves to break Hookean symmetry.

3. Stokesian suspensions
In addition to the property of strict dissipation, we can infer from the properties of

the Stokes equations certain important aspects of the history dependence of various
continuum properties. As an illustration, we first consider sphere suspensions, where
angular orientation of particles can be ignored.

In an unbounded suspension of spheres subject to uniform global strain rate E(t)
and vorticity W(t), the current value of all effective continuum properties, including
the viscosity tensor η, is presumably determined by E, W and the instantaneous
configuration C(t) = {xα(t), α = 1, 2, . . .}. where xα represents the centre of sphere
α. The latter is governed by a frame-indifferent set of ODEs, linear in E, W, assumed
in Goddard (1982) and given by Stokesian resistance formulae, e.g. in Bossis & Brady
(1984):

dxα

dt
= Wxα + ξα : E (α = 1, 2, . . . , N), (9)

subject to an initial condition C(0) at an arbitrary time origin t = 0. Here ξα is a
third-rank tensor depending on C(t), with dilute (Einstein) limit

ξα : E → xα · E ≡ Exα for φ → 0,

where the spheres move as fluid particles. For larger φ, (9) apparently becomes chaotic
owing to multi-body hydrodynamic interactions (Drazer et al. 2002).

Frame indifference permits the transformation of (9), by means of a particular
time-dependent orthogonal transformation Q(t), to a co-rotational form:

dzα

dt
= ζ α: H with zα = QT xα, (10)

where

ζ α = ξα(Cz(t)) with Cz(t) = {zα, α = 1, 2, . . .},

and H denotes the co-rotational strain rate:

H(t) = QT (t)E(t)Q(t) with
dQ

dt
= WQ, Q(0) = 1. (11)
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Thus, all flows with nominally constant velocity gradient are equivalent to oscillatory
straining, as indicated explicitly for simple shear in (20)–(21) below.

It is clear from (10) that Cz(t) and all derived continuum properties should be
determined by the history of H(t ′) on (0, t):

hz = H
t

(t ′)
0

, (12)

together with an initial condition Cz(0). Given the nature of the underlying
Stokes equations, we expect the ODEs (10) to exhibit continuous and differentiable
dependence on Cz(t), such that solutions Cz(t) exhibit no singular dependence on
isolated values of H or on other sets of zero measure. The issue is crucial to the
response of stress to discontinuities in H, as in certain flow reversal experiments
(Gadala-Maria & Acrivos 1980; Kolli et al. 2002) discussed below. In particular, and
contrary to experiment, it follows from (2) that one should find strict linearity of
stress T(t) in instantaneous strain rate E(t), with simultaneous reversal of the former
upon abrupt reversal of the latter.

The possibility of chaos in (10) allows for loss of memory (Drazer et al. 2002) in
the form of effaceable memory, with eventual independence from Cz(0).

Furthermore, the absence of characteristic time in the Stokes equations implies
that the underlying dependence on history is time-scale invariant and hence rate-
independent (Goddard 1982), a property already apparent from (9) and (10).
Consequently, time can be replaced by a strain measure, with appropriate scaling
of kinematic rates:

t →
∫ t

0

|E(t ′)| dt ′, E(t) → E(t)

|E(t)| , W(t) → W(t)

|E(t)| , etc., (13)

where again | | denotes the trace norm. Thus, whenever shearing stops, ‘time’ stops,
and the usual ‘fading memory’ due to thermally driven relaxation, becomes effaceable
memory arising from shear-driven chaos.

Most of the preceding remarks for spheres carry over to suspensions of torque-free,
non-spherical particles, with the ODEs for the additional configurational variables
again indicating a direct dependence on (12).

3.1. Fabric evolution

The representation of kinematic history by means of (Boltzmann) memory integrals
is widespread in modern continuum mechanics, and has been justified by an appeal
to fading memory (Coleman & Noll 1961). In the case of Stokesian suspensions,
the preceding considerations suggest a co-rotational integral (Goddard 1967; Bird
et al. 1987) for A(hz) (although other integral models, exhibiting instantaneous elastic
response, are favoured in the current literature on viscoelastic fluids).

To explore the potential use we adopt, as the leading term of a more general
functional expansion (Goddard 1967), the deviatoric part of

A(t) = −
∫ t

0

ψ̇(t − t ′)[Ht (t
′) + χH2

t (t
′)] dt ′ + A0ψ(t), (14)

where A0 denotes the initial fabric, ψ(t) a memory function with ψ(0) = 1,

Ht (t
′) = QT

t (t ′)E(t ′)Qt (t
′) with Qt (t

′) = Q(t ′)Q−1(t), (15)

is the relative co-rotational strain rate, and Q(t) is given by (11).
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The quadratic term in (14) is required to achieve a reasonably general response in
simple shear and simple extension, and its scalar coefficient χ depends on the scalar
invariants of Ht (t

′). However, since tr(Ht (t
′)) = 0, and tr(H2

t (t
′)) = 1 by (13), the sole

remaining invariant can be chosen as det(Ht (t
′)). In the simple shear considered below,

the latter vanishes, and χ reduces simply to a constant. Most of the algebraic detail
and the consequences for viscometric functions can be found in Goddard (1967).

Based on the assumption of fading or effaceable memory, we take

ψ(t) → 0 for t → ∞,

and replace (14)by

A(t) = −
∫ ∞

0

ψ̇(s)
[
Ht (t − s) + χH2

t (t − s)
]
ds, (16)

where s is past time-lapse. Then, for t > 0, the portion of the integral over 0 <s < ∞
serves to identify A0 in (14) with remnant anisotropy.

For purposes of illustration, we further employ a standard representation in terms
of discrete exponentially relaxing modes (Bird et al. 1987; Larson 1999):

ψ(t) =

M∑
k=1

ψ̂ke
−t/tk with

M∑
k=1

ψ̂k = 1, (17)

with modal amplitudes ψ̂k and relaxation strains tk > 0.
It can be shown (Goddard 1967 and references therein) that (17) represents a linear

Mth-order ODE for A and, hence, a generalized linear version of the equation of
Hand (1962) in which the constants tk represent ‘relaxation strains’. We recall that
the description of structural evolution by means of ODEs is favoured in much of
the literature on viscoelastic fluid mechanics, in part because they are adapted to
contemporary numerical and analytical methods and also because they arise from
simplified micro-mechanical analyses such as that of Phan-Thien (1995). In particular,
his fabric-evolution equation can be written in the present notation as a first-order
nonlinear ODE:

λ

[
DtA − AE − EA − 2

3
E + 2

3
tr(AE)1 − 2

η1

T′(A, E)

]
+ A = 0, (18)

where λ ∝ |E|−1, and T′(A, E) is the deviatoric stress given by the modified form of (8)
discussed above in the final remarks of § 2. Hence, up to an additive non-Stokesian
term |E|A, (18) has the same form as the evolution equation of Barthès-Biesel &
Acrivos (1973).

4. Unsteady simple shear
For the standard matrix representation of unsteady simple shear, with shear rate

κ(t):

{E, W} = κ(t) {E0, W0} where
E0

W0

}
=

1

2

⎡
⎣ 0 1 0

±1 0 0
0 0 0

⎤
⎦, (19)

the co-rotational strain rate (15) becomes

Ht (t
′) = exp {−γt (t

′)W0} E0 exp {γt (t
′)W0}

= cos γt (t
′)E0 + sin γt (t

′)[E0W0 − W0E0], (20)
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where

γ =

∫ t

0

κ(t ′) dt ′, γt (t
′) = γ (t ′) − γ (t), H2

t (t
′) ≡ E2

0, (21)

with γ representing shear strain.
By standard symmetry arguments for stress or optical-index tensors in viscometric

flows (Truesdell & Noll 1965; Coleman & Dill 1971), it can be shown that A(t) must
assume the general form

A =

⎡
⎣λ(t) + β(t) α(t) 0

α(t) λ(t) − β(t) 0
0 0 −2λ(t)

⎤
⎦, (22)

provided the contribution from initial or remnant anisotropy A0 has the same form.
Here, α, β, λ are functionals depending on the history of κ(t). whose description can
be simplified as follows for rate-independent materials.

For the purpose of the calculation to follow and to conform to the usual definition
of shear strain, the strain measure t is defined in terms of actual time t and shear rate
κ by replacing |E| everywhere by

√
2|E| in (13), in order to agree with the definition

employed in experiments cited below. Thus, with the kinematics (19), the substitutions

t →
∫ t

0

|κ(t ′)| dt ′, κ(t) → sgn[κ(t)], (23)

now represent the time–strain transformation (13). Thus, for rate-independent
materials, the unsteady velocity gradient can be replaced by the binary (±1) ‘telegraph
signal’ of κ vs. strain t , with (14) representing a ‘filter’ (cf. Jakeman & Ridley 1999).
This is illustrated by the following examples.

Oscillatory shear

For a sustained periodic simple shear at circular frequency ω,

κ(t) = κ0 sinωt, (24)

where t is actual time, it is easy to show that the transformation (23) gives, as
a particularly simple example of the telegraph signal mentioned above, the unit
2t0-periodic square wave (Rademacher function):

sgn(κ) = S

(
t

t0

)
:= sgn

{
sin

(
πt

t0

)}
with t0 =

2κ0

ω
, (25)

where t now denotes the strain measure (23). The actual shear strain, the time integral
of (24), is therefore given in terms of the strain measure t as the 2t0-periodic triangle
wave:

γ (t) =

∫ t

0

sgn(κ) dt =
t0

2

[
1 + (−1)�t/t0�

(
2

{
t

t0
−

⌊
t

t0

⌋}
− 1

)]
, (26)

where brackets � � denotes the ‘floor’ function (the largest integer less than the
argument). Substitution into (20)–(21) gives an explicit expression for the integrand
of (16), which leads readily to the functions in (22), with α(t), β(t) given by 2t0-
periodic linear combinations of cos γ (t), sin γ (t), and with λ(t) ≡ χ/12, constant. The
rather straightforward details are not recorded here since, apart from the extremely
limited data of Gadala-Maria & Acrivos (1980) and Singh & Nott (2003), I know
of no oscillatory-shear experiments that would allow for comparison with the above
calculations. Instead, we turn to the case of transient shear.
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4.1. Start-up of steady shear

By means of (20)–(21), with γ ≡ t , we readily obtain analytic expressions for the
functions in (22) from (14) and (17), which reduce after considerable algebra to:

α(t) = s
m∑

k=1

ψ̂k cos ϕk

[
cos ϕk − e−t/tk cos(t + ϕk)

]
+ α0

m∑
k=1

ψ̂ke
−t/tk ,

β(t) =
m∑

k=1

ψ̂k cos ϕk

[
sinϕk − e−t/tk sin(t + ϕk)

]
+ β0

m∑
k=1

ψ̂ke
−t/tk ,

where s = sgn[κ(t)] and ϕk = tan−1
[
tk
/(

1 + t2
k

)1/2]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(27)

with λ(t) = χ/12, constant. These relations also define the steady-state values α∞, β∞.
From standard symmetry arguments it follows that reversal at t = 0 of a previous
steady-state shear corresponds to the initial condition:

α0 = −α∞, β0 = β∞, λ0 = λ∞, (28)

as suggested by (16) and (20). Substitution of (27) into (8), followed by elementary
matrix algebra, yields explicit analytic forms for the viscosity η(t) and the primary
and secondary normal-stress differences N1(t), N2(t), including their steady-state values
η∞, N1∞, N2∞. These can be reduced to the more concise form:

η(t)/η∞ = 1 + a[α2(t) − α2
∞] + b[β2(t) − β2

∞], (29)

N1(t)/N1∞ =
α(t)β(t)

α∞β∞
, (30)

N2(t)/N2∞ = 1 + c[α(t) − α∞] + f [α(t)β(t) − α∞β∞]

+g[α(t)β2(t) − α∞β2
∞] + h[α3(t) − α3

∞], (31)

involving three steady values η∞, N1∞, N2∞, six coefficients a, b, . . . , h and functions
α(t), β(t) given by (8) and (14) in terms of ψ(t) and ξ and the eight more fundamental
coefficients in (8). The latter are not uniquely determined by a, b, . . . , h, and we do
not record the relations between them here. Positive dissipation is now guaranteed by
η(t) > 0, which provides restrictions on the parameters in (29).

For simple shear, the relations (8), (14) and (17) introduce a total of 2M +8
adjustable parameters that are mapped onto the nine parameters in (29)–(31). This is
illustrated by the following example, employing M = 2 exponential modes.

Comparison to experiments on shear reversal

Gadala-Maria & Acrivos (1980) and Kolli et al. (2002) report on the results of
shear experiments involving abrupt reversal of steady shear. Both works allow for
measurement of viscosity, whereas the second also involves the measurement of
normal thrust in an annular ‘split-ring’ torsional-shear device, with ambient pressure
maintained at the inner and outer free surfaces of the sample. Despite a possible
reservation as to compatibility of these boundary conditions with the radial force
balance, and setting aside a general concern as to the effect of inhomogeneous torsional
shear in unsteady flow (V. Kolli & F. Gadala-Maria 2005, personal communication),
we adopt the standard formula for steady torsional shear between parallel disks (Bird
et al. 1987; Kolli & Gadala-Maria 2005, personal communication). This gives the
ratio N of transient to steady normal thrust as

N(t) =
N1(t) − N2(t)

N1∞ − N2∞
≡ N1R − R∞N2R

1 − R∞
, (32)
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Figure 1. Structure functions �, α(t); ×, β(t) estimated from the data of Kolli et al. (2002)
for φ = 0.4, κ∞ = 0.5 s−1.

where

NkR = Nk(t)/Nk∞, k = 1, 2, R∞ = N2∞/N1∞. (33)

Also, since there was a slight departure from strict linearity of stress with shear rate,
possibly due to instrument artefacts, we restrict our attention here to the experiments
with steady shear rate κ∞ =0.5 s−1.

All of the above experiments indicate a pronounced departure from complete
reversal of stress immediately following reversal of shear, which the present model
can describe only by means of rapidly decaying exponential modes with extremely
short relaxation strains. To illustrate this, we consider a simple two-mode exponential
decay in (17), with t2 
 t1 = 0(1).

Figure 1 presents plots of the functions α, β in (22), and figure 2 shows the computed
values of the normalized viscometric functions (29)–(31) for the following parameter
values:

R∞ = 4.9219, ψ̂1 = 0.5384, t1 = 0.9407, t2 = 0.0001, a = 1.0727,

b = −4.6557, c = 1.7024, f = −2.6318, g = −0.9751, h = 1.3578,

}
(34)

obtained by a standard nonlinear least-squares technique (implemented by the
Matlab R© program ‘LSQNONLIN’), to fit the experimental data of Kolli et al. (2002)
at particle volume fraction φ = 0.4 and κ∞ = 0.5 s−1. These data are shown in figures 5
and 6 of Kolli et al. (2002) and have been provided in a numerical format (Kolli &
Gadla–Maria 2005, personal communication).

The value of R∞ is within the range of those estimated by Zarraga et al. (2000) from
their steady-shearexperiments, while any value of t2 � 0.001 is sufficient to describe
the initial steep relaxation. It can be seen from figure 2 that the values (34) result in
a significant transient overshoot of N1.
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Figure 2. Normalized viscometric functions for reversal of steady shear estimated from the
data of Kolli et al. (2002) for φ = 0.4, κ∞ = 0.5 s−1. �, N1; ×, N2; *, viscosity.

The same procedure was employed for the data of Kolli et al. (2002) at φ = 0.5 and
κ∞ = 0.5 s−1, with the resulting parameter values:

R∞ = 10.96, ψ̂1 = 0.5733, t1 = 0.7798, t2 = 0.0001, a = 0.7798,

b = −2.8143, c = 0.9340, f = −1.9017, g = 2.4341, h = 1.1652,

}
(35)

with figures 4–6 replacing figures 1–3, respectively.
Again, any value of t2 � 0.001 is sufficient to describe the initial steep relaxation.

However, the value of R∞ now lies outside the range estimated by Zarraga et al. (2000),
leading us to wonder about the strict validity of relation (32) for the apparatus of
Kolli et al. (2002). In any event, it can be noted that the structure functions and
normalized viscometric functions are not radically different for φ = 0.4 and φ =0.5,
as seen by a comparison of figures 1 and 2 with figures 4 and 5. This may suggest
a potentially useful scaling of the transient structure and viscometric functions with
their steady-state values.

While certain improvements to the above fit could be achieved by employing more
exponential modes in (17), this would scarcely be justified by the existing experimental
data. This suggests that other forms of unsteady shear may be called for, including
more detailed versions of the oscillatory-shear studies of Gadala-Maria & Acrivos
(1980) and Singh & Nott (2003).

As things stand, the values t1, t2 in (34) and (35) beg for a theoretical
rationale. In particular, the strain t2 is orders of magnitude smaller than the value
κa2/D ≈ 102 − 103 that one would infer from various experimental and theoretical
estimates of hydrodynamic diffusivities D (see e.g. Drazer et al. 2002, figures 14–16,
with φ =0.4). It is perhaps more plausible to attribute the small value of t2 to
non-hydrodynamic effects, for example, by identifying it with the small parameter
ε ≈ 0.0001 − 0.0004 appearing in the interparticle force potential,

ϕ(r) = ln(1 − exp(−(r − 2)/ε)), (36)
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Figure 3. Relative torque (inverted triangles) and normal force (triangles) from of Kolli et al.
(2002) for φ = 0.4, κ∞ = 0.5 s−1 compared to the model with parameter values in (34). �, N ; *,
viscosity.
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Figure 4. Structure functions �, α(t); β(t), for the parameter values estimated from the data
of Kolli et al. (2002) for φ = 0.5, κ∞ = 0.5 s−1.

employed in numerous simulations (Bossis & Brady 1984; Sierou & Brady 2002;
Drazer et al. 2002) to break Stokesian symmetry for pairs of spheres in near contact.
Thus, with (r − 2) representing the non-dimensional sphere separation along direction



A model for non-colloidal particle dispersions 13

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Shear strain

Figure 5. Normalized viscometric functions for reversal of steady shear, estimated from the
data of Kolli et al. (2002) for φ = 0.5, κ∞ = 0.5 s−1. �, N1; ×, N2; *, viscocity.
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Figure 6. Relative torque (inverted triangles) and normal force (triangles) from Kolli et al.
(2002) for φ = 0.5, κ∞ = 0.5 s−1, compared to the present model with parameter values in (35).
�; N ; *, viscocity.

n, the parameter ε represents the characteristic strain n · En associated with making
or breaking contact.

Other possibilities for symmetry breaking may arise from small elastic effects in
near contact, such as elastohydrodynamic deformation of particles, or viscoelastic



14 J. D. Goddard

response of an otherwise Newtonian suspending fluid. In any event, the associated
small strain or time parameter can be regarded as a singular perturbation to Stokesian
hydrodynamics, particularly in the description of evolution by ODEs.

By contrast, the value t1 = O(1) in (34) is suggestive of a large-scale hydrodynamic
re-orientation of suspension microstructure. However, without investigating alter-
native representations to (14), we cannot rule out artefacts due to this assumed form
of history dependence.

Regarding the last point, we recall that the evolution equation (18) of Phan-Thien
(1995), which employs a much smaller number of adjustable parameters, predicts
viscometric functions that are qualitatively similar to those shown in figures 2 and 4.
The incomplete stress recovery in shear reversal is due to broken Stokesian symmetry
arising from the term |E|A discussed above. Given its relative simplicity, a slightly
modified version of Phan-Thien’s model could prove a useful adjunct or alternative
to the general phenomenological approach employed here.

5. Granular plasticity
The dissipative model (2) is also applicable to the quasi-static mechanics of

assemblies of non-cohesive rigid grains (Goddard 1984), for which the ‘effective’
granular stress, over and above the pressure of any interstitial (‘pore’) fluid, is given
by (2), with

η = ps |E|−1µ{h} (37)

where µ is a non-dimensional fourth-rank (Mohr–Coulomb) friction tensor and ps > 0
is the confining pressure on the solid granular phase. (Replacing ps by a constant
with units of stress gives a standard pressure-independent model of rigid plasticity.)
With the interpretation of T as deviatoric stress, inversion of (37) formally yields
a history-dependent conical yield surface (Goddard (1984, 1998); Didwania et al.
(2001)), defined by:

T :µ−2 : T = p2
s (38)

where µ−2 denotes the square of the linear transformation µ−1.
Granular media generally are subject to a dilatancy constraint (Goddard 1998;

Didwania et al. 2001), which can be represented by specifying the dependence of
tr(E)/|E| on h. We recall that dilatancy vanishes at the so-called ‘critical state’ and
also in the fully saturated state, which are contiguous to the maximally dense shearable
state of particle suspensions.

In the absence of colloidal forces, micro-inertia, or pore-fluid viscosity, we can
rule out any material time scale, which once again allows for the rate-independent
description of kinematics implied by (13), a hallmark of standard plasticity theory.
However, in contrast to Stokesian suspensions, the mechanics of granular media are
dominated by direct, pairwise mechanical contact between particles, usually modelled
by a Mohr–Coulomb type of sliding friction. The latter corresponds, incidentally, to a
well-known micro-mechanical analogue of (37), with T, E and ps replaced, respectively,
by tangential force, sliding velocity and normal force at a contact. This type of contact
force lacks Stokesian linearity, so that the analogues of (9) or (10) should generally
involve additional dependence of ξ or ζ , respectively, on E or H (as indicated in
Goddard 1984).

From the preceding considerations, it follows that the analogous simplification to
that made above for suspensions must now allow for the dependence of µ on E(t)
as well as on the fabric A. However, since fabric depends only on current particle
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configuration, its history dependence should involve no singular dependence on E(t)
or other sets of zero measure. In any event, the current stress T(t) must be given by an
isotropic function of both E(t) and A, whose general form, nonlinear in E and given
in equation (2) of Hand (1962) (cf. Barthès-Biesel & Acrivos 1973), involves nine
scalar coefficients depending the joint isotropic scalar invariants of E and A. Even
after reductions based on isotropy and rate-independence, there remain significantly
more coefficients than in (8).

Without the history dependence represented by A, the preceding model reduces
to a well-known isotropic Reiner–Rivlin form, a polynomial in E(t) with coefficients
depending on its scalar invariants (Goddard 1996). A special linear version of this
model has been proposed to describe certain dense granular flows (Jop, Forterre &
Pouliquen 2005, equation (4.2)), with inclusion of rate effects based on a micro-inertial
time scale previously identified in Goddard (1996). However, it may be optimistic to
expect the Reiner–Rivlin form, let alone simpler versions, to describe complex three-
dimensional deformations of granular yield, given the anisotropic model required
for suspensions. Of course, the latter requires evolution equations for A, and the
co-rotational memory integral (14) or equivalent ODEs appear worthy of further
investigation.

Since particle diffusion and memory loss may arise from stochastic, possibly chaotic
particle mechanics, even in quasi-static flow (Phan-Thien 1995; Didwania et al. 2001;
Radjai & Roux 2005), there is a question as to the validity of the exponential relaxation
assumed in (17). If valid, then much of the present development for suspensions would
carry over to granular media. Leaving these issues to future investigation, we close
with a brief mention of rate effects.

5.1. Viscoplasticity

Beyond the quasi-static regime, we must contend with strain-rate effects and
departures from the scaling implied by (13). In addition to the micro-inertia
mentioned above, dense rapid granular flows may also involve rate effects arising
from pore-fluid viscosity. Conversely, dense suspensions with φ near the limit of
shearability may involve non-hydrodynamic particle-contact effects as well as micro-
inertia. Consequently, it will probably be necessary to replace (37) by a more general
viscoplastic ‘Oldroyd–Bingham’ model (Goddard 1984):

η = ps |E|−1µ(0) + µ(1), (39)

where µ(0) and µ(1) refer, respectively, to plastic and viscous contributions of the type
discussed above.

The immediately obvious time scale ps/µ0 in (39), where µ0 is a characteristic
viscosity, represents one of the micromechanical effects envisaged above and may
be implicated in experiments on wet granular media by Tsai & Gollub (2004)
and Huang et al. (2005). Although ps arises from enduring particle contact in those
experiments, it might loosely be interpreted as a limiting form of the ‘particle pressure’
appearing in certain suspension theories (Brady & Morris 1997). At any rate, the
relative importance of terms on the right hand-side of (39) is governed by the
relative magnitudes of forces due to particle contact and to fluid viscosity and is
no doubt involved in the transition from granular medium to dense suspension.
There are numerous questions as to the importance of rate effects on the evolution
of anisotropy and as to the possibility of representing the latter by a single fabric
tensor.
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6. Conclusions
We have investigated a simplified version of the purely dissipative continuum model

for the viscoplasticity of particulate systems. In this version, the history-dependence
of the fourth-rank viscosity tensor is represented by a second-rank fabric tensor,
whose kinematically driven evolution is described as a co-rotational memory integral.
An expansion up to terms of third order in anisotropy, together with a single-
integral co-rotational model and a strain-based exponential relaxation, gives a close
fit to experimental shear- and normal-stress recovery following reversal of steady
simple shear (Kolli et al. 2002). At least one rapidly relaxing mode is necessary to
represent the partial reversal of stress observed in such experiments. The rapidity
of this relaxation is highly incommensurate with estimates based on hydrodynamic
diffusivity, suggesting non-hydrodynamic effects of the type invoked in numerous past
studies.

A cursory survey of the mechanics of non-cohesive granular media suggests the
potential use of the plastic and viscoplastic versions of the above model for application
to dry and liquid-saturated granular media as well as dense suspensions. The present
work may serve as a guide to further micromechanical studies, e.g. such as that of
Phan-Thien (1995), and to crucial experimental studies of transient and oscillatory
shear, in order to sharpen the underlying constitutive theory.

This work is an outgrowth of research begun under US National Aeronautics and
Space Administration Grant NAG3-1888. I am particularly indebted to one referee
for pointing out the work of Phan-Thien (1995).
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